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Operator content of n-state quantum chains in the c = 1 region 

G von Gehlent, V RittenbergS and G Schutzt 
t Physikalisches Institut, Universitat Bonn, D-5300 Bonn 1, Federal Republic of Germany 
$ Centro Brasileiro de Pesquisas Fisicas-CBPF/CNPq, Rua Dr Xavier Siguad 150, 22290 
Rio de Janeiro, RJ, Brazil 

Received 12 October 1987, in final form 16 February 1988 

Abstract. We conjecture the operator content for n-state quantum chains ( n  3 5)  in the 
domains of the coupling constants where the central charge of the Virasoro algebra is equal 
to one. Free boundary conditions as well as boundary conditions compatible with the 
torus are considered. The conjectured operator content is compared with finite-size scaling 
estimates. 

1. Introduction 

This paper is a continuation of our previous studies on the critical behaviour of n-state 
quantum chains. These chains are defined by the Hamiltonians 

where a k  = an-k  are real coupling constants, A plays the role of the inverse of the 
temperature, N represents the number of sites and the n x n matrices U and r are 

0 0 . . .  ; 0 1  
. . . w n - '  

0 0 * . '  0 1  

... :]. 
0 0  1 0  

Here w = exp(2ri /n)  and 6 is a normalisation factor which fixes the timescale, to be 
discussed later. The Hamiltonian H is self-dual, i.e. 

H ( A )  = AH(l/A).  (1.3) 

The cases n = 2 and n = 3 correspond to the Ising and three-state Potts model and 
their operator content is known. The case n = 4 which describes the Ashkin-Teller 
model has also been recently understood (Rittenberg 1987, Baake et a1 1987b, c, Yang 
1987a, b, Yang and Zheng 1987, Saleur 1987). Starting with n = 5 the critical properties 
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of the system are more complex and several values of the central charge of the Virasoro 
algebra occur for the same value of n. Roughly speaking one expects the central charge 
which measures the number of degrees of freedom of the system to increase with n 
and  this indeed happens for certain values of the coupling constants. At the same 
time there are regions in the space of the coupling constants where some degrees of 
freedom are frozen and  the central charge is smaller. From older work (Josk et 
1977, Elizur et a1 1979, Cardy 1978, Kadanoff 1979, Fradkin and Kadanoff 1980, 
Nienhuis 1984) and our  own numerical studies, all the systems with n 2 4  have a 
domain of the coupling constants where c = 1 and  other domains where c is larger. 
Some partial results for the six- and eight-state models have been already published 
(von Gehlen and  Rittenberg 1986a, 1987, Schiitz 1987). For example, for the choice 
of parameters ak = 1 for k odd, ak = 0 for k even, we obtained c = 1.25 for n = 6 and  
c-1.30 for n = 8 .  For a k = l / s i n ( r k / n )  one has c = 2 ( n - l ) / ( n + 2 )  (Zamolodchikov 
and  Fateev 1985, Alcaraz 1986) whereas for the vector-Potts case u2 = . . . = = 0, 
a, = = 1 our numerical analysis gives c = 1 for n 2 5. For other values of the uk 
still other values of c appear. 

In this present paper we confine ourselves to the domain in the space of the coupling 
constants where c = 1. It turns out that, although the quantum chains defined by 
equation (1.1) have only the discrete dihedral group D, as global symmetry, at criticality 
and  large N the symmetry is U( 1) x U( 1) for boundary conditions compatible with 
the torus and  U ( l )  for free boundary conditions. As a result the operator content of 
these models can be expressed in terms of irreducible representations of two commuting 
U ( l )  Kac-Moody algebras for the torus and  one U(1) Kac-Moody algebra for free 
boundary conditions (see Baake et a1 (1987b, c) and references therein for the n = 4 
case). The higher symmetry at criticality and  the value of the central charge c = 1 
suggest that the dimensions of the primary fields of the model are given by the Gauss 
model (di Francesco et a1 (1987) and references therein): 

A = ( M  gN)*/(4ng) (1.4) 

where M and N are integers and g is a parameter. There are some sectors of the 
models which are not described by equation (1.4). In these sectors one gets 

A = & + m  (1.5) 

where m is integer or  half-integer. This corresponds to an irreducible representation 
of a twisted U ( l )  Kac-Moody algebra to be defined later. 

We now have to explain how the parameter g is related to the physics of the 
problem. Let us assume that for a certain choice of the coupling constants ak and 
A = 1 (the self-dual line) one finds c = 1. Then the system stays critical in a domain 
of A, called the critical fan: 

l / A m a x S  A C A m a x .  (1.6) 

Now g = g(A) turns out to be a monotonic function of A such that 

g ( 1 I A ,ax) = 41 n g(1) = 1 g(Amax) = i n *  (1.7) 

The form of the function g(A) depends on the coupling constants ah. This coincides 
with the known result of the clock model (see, for example, Fradkin and Kadanoff 
(1980); their coupling constant Kefi  is related to our g by the relation ng = 27rKefi). 
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To illustrate the picture let us consider the leading magnetic exponents xQ (periodic 
boundary conditions) corresponding to the charge-Q sector of the theory ( Q =  
1 ,2 , .  . . , n -1). We find 

XQ = X,-Q = ~ A Q  = Q 2 / 2 n g  

2 Q 2 / n 2 < x o < ~ Q 2  (1.9) 

Q = 1 ,2 , .  . . , [n/2] (1.8) 

which gives 

and we recover a known result (Elizur et a1 1979, Cardy 1978). 
Notice that, for n = 4, we see from equation (1.7) that g = 1. Then we may have 

A,,, = A,,, = 1, which is only one point in the phase diagram of the Ashkin-Teller 
model. This point corresponds to a Kosterlitz-Thouless phase transition. 

The aim of this paper is to present a complete description of the critical exponents 
of the n-state models. They are obtained from the finite-size limit spectra of the 
Hamiltonian with different boundary conditions. The free-boundary-condition case 
gives the surface exponents (Cardy 1984, 1986, von Gehlen and Rittenberg 1986a, b). 
There are 2n toroidal boundary conditions corresponding to the 2n elements of the 
group D,. The boundary condition corresponding to the unit element (periodic 
boundary condition) gives the anomalous dimensions of the scalar operators (like the 
energy density) and the order operators, the other 2n - 1 boundary conditions corre- 
sponding to various disorder and parafermionic operators (Cardy 1986). We would 
like to stress that there are hypersurfaces in the space of the coupling constants ak 
(see equation (1.1)) where the symmetry is larger than D, (Marcu et a1 1981). In these 
cases one has to consider more boundary conditions and determine the corresponding 
finite-size spectra. This very interesting exercise is not considered here. 

Our paper is organised as follows. In § 2 we discuss the symmetry of the problem 
corresponding to different boundary conditions. In § 3 we define the finite-size scaling 
quantities which give the operator content of the model and we summarise the necessary 
knowledge on the representation theory of Virasoro and U( 1) Kac-Moody algebras. 
In § 4 we consider the case of free boundary conditions. We first review the situation 
in the Ashkin-Teller model ( n  = 4) and then conjecture the operator content for n 3 5. 
This conjecture is compared with numerical estimates on the self-dual line ( A  = 1) for 
n = 5, 6, 8 and 12. The case of boundary conditions compatible with the torus is 
considered in § 5. We first conjecture the operator content for the whole massless 
phase. Then we specialise to the case A = 1 where the operator content is independent 
of the coupling constants and takes a simpler analytical form. This operator content 
is then compared with numerical estimates. The conclusions of our work are given in 
§ 6 where we also present the large n-limit of the model. In the appendix, for 
completeness, we review the known construction of the irreducible representations of 
the U( 1) untwisted and twisted Kac-Moody algebras. 

2. Symmetry of the Hamiltonian for various boundary conditions 

In this section we study the symmetry of the Hamiltonian equation (1.1) for various 
boundary conditions (BC) and the resulting decomposition of the spectra into sectors. 

We first consider free BC 
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and periodic BC 

r N + I  = r, 
and denote the corresponding Hamiltonians by HF and H o ,  respectively. Both H F  
and H o  are invariant under the global transformations 

(r;)" = A"'r: ( 2 . 3 )  

where A is one of the ( n  - 1) X ( n  - 1) matrices Z' or EkC (I, k = 0,1 , .  . . , n - 1) and 

\o 0 . . .  w 

The matrices Z' and ZkC (1, k = 0,  1,. . . , n - 1) form the dihedral group D, with 2n 
objects. Let us write n = 2 p  + 1 for n odd and n = 2p + 2 for n even. 

The group D, has p two-dimensional representations 

and for n odd there are two one-dimensional representations 

For n even we have two more one-dimensional representations: 

Since HF and H o  are invaraint under the transformations ( 2 . 3 ) ,  their spectra 
decompose into sectors HIc*i, H i ( - ] ,  respectively, according to the irreducible rep- 
resentations A'a' of D,, equations (2 .5) - (2 .7)  (for special choices of the coupling 
constants ak in equation (l.l), the symmetry can be larger than D,, but for the present 
discussion we consider general a k ) .  In order to simplify the notation, we shall make 
use of the fact that D, is a semidirect product of Z, and Z2. For periodic BC we write 
H: for Q Z O  and Q # + n  where H:=H:-,  build together the two-dimensional 
representation D,, equation (2 .5) .  If Q = 0 we have the two one-dimensional rep- 
resentations Do,+ and Do,- and we write H:,+ and If:,-, respectively. Similarly, for 
Q = f n  ( n  even) and the representations (2 .7)  we write HOn12,+ and H:12,-. The signs 
* correspond to the Do,*( C) = *l ,  Dn12,+( C) = il. The case of free BC is completely 
analogous. 

Now we proceed to the other boundary conditions compatible with the torus. If 

r",,, = B k m T y  ( 2 . 8 )  

we denote the corresponding Hamiltonian by H E ,  where B is one of the matrices Z' 
or CRC (0, R = 0,  1,. . . , n - 1). In general the symmetry of H n  will be smaller than 
D,. It is given by the group GB (GB E D,) of those matrices A in equation ( 2 . 8 )  which 
commute with B. Now it is trivial to show that two Hamiltonians HBl and Hn2 
corresponding to two BC B ,  and B2 have the same spectrum if the group elements B ,  
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Table 1. Symmetry of the n-state Hamiltonian for various boundary conditions 

Boundary Number of 
condition Group elements Elements 

zo D A 2 n  xi, zn'c 
( I ,  m = 0 , 1 ,  . . . ,  n - 1 )  

( I = O ,  1 , .  . . , n -1) 

( I ,  m=O, 1 , . . . ,  n - 1 )  

zc' z I ,  n z' 

D 71 2n 2, xmC 

n = 2 p + 2  z ~ C  z,xz, 4 IO, ZP+', z R c ,  XR+P+'C 

2 2  2 P, zRc 
{::: 0,  . . . , n - 1 

( k = O ,  . . . , n -1) 
n = 2 p + l  zRc 

and B2 belong to the same conjugacy class. For n = 2p + 1 (odd) the 2 n  group elements 
of D; form p + 2 conjugacy classes: 

{E0} {ek, k = 1,2, . . . , p 

{C, cc,. . . , Z n - ' c } .  
(2.9) 

If n is even, n = 2p + 2, and there are two more conjugacy classes: the last class of 
equation (2.9) splits into 

(2.10) {ZC, Z", . . . , Z;"-'c} {C, e'c, . . . , c-c} 
and in addition we also have {E."/'}. 

In table 1 we show the symmetry groups G B  corresponding to the various boundary 
conditions B. The spectrum of H B  can now be decomposed into sectors H i 2 1  according 
to the irreducible representations A',.' of GB. If 0 =$n  ( n  even), we have the sectors 
H ; / 2  ( Q  # 0,  i n ) ,  H,",C (corresponding to the representations Do,+) and H;::,+ (corre- 
sponding to DnI2,+ (equation (2.7)). If the boundary condition is ZRC, the symmetry 
is Z 2 x Z 2  (for n even) and the sectors will be denoted by HIt3/2,+,z~C=+. For n odd 
the symmetry is only Z2 and the sectors are Hf:$=,. 

TRC 

To sum up, for n even we have the sectors 

(2.11) 

(2.12) 

n / 2  Hn/2 PRC H 8 ,  H!,&, HO,/',*, HO$, n /2 ,= ,  HI"k*,LRC=* 
and for n odd we have the sectors 

HZRC H$, H!,+, I R C = * .  

The case of free boundary conditions parallels the case of periodic boundary 
conditions (0 = 0). We have 

H ;  = K-,, H;, *, HE/*,* 

HG = HE-o, H;,, 

n even 

n odd. 
(2.13) 

3. Finite-size scaling, Virasoro and U( 1) Kac-Moody algebras 

In this section we summarise the standard lore. We start with finite-size scaling. First 
we consider the case of free boundary conditions (Baake et a1 (1987a, b) and references 
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therein). We denote by E y ( * ) ( r ;  N )  the energy levels of the Hamiltonian HF with N 
sites (A labels the sectors); r = 0 denotes the lowest energy level, r = 1 the first excited 
state, etc. Since the Hamiltonian HF is invariant under parity, HF'" denotes the parity 
sectors * of the Hamiltonian. This is a space symmetry unrelated to the internal 
symmetries discussed in 8 2 .  Let E [ ( N )  be the ground-state energy for a chain of N 
sites. This is the lowest energy level in HF,y'. We consider the quantities (Cardy 1984, 
1986, von Gehlen and Rittenberg 1986b) 

N a:.'( r )  = lim - (ET(*)( r ;  N )  - E;( N ) ) .  
N - x  7~ (3.1) 

It is a consequence of conformal invariance that an  irreducible representation (A)"  of 
the Virasoro algebra 

[ L , ,  L,I = ( m  - ~ I L , + ,  +&C(m3- (3.2) 
with a highest weight A gives the following contribution to the spectra 8y) ( r ) :  

8(:'( r )  = A + 2r r = O ,  1 , .  . . 
r = O ,  1 , .  . . r ) = A + 2 r + 1 

or 
8 f 1 ( r ) = A + 2 r  

ZS!:'(r)=A+2r+l 

r = 0, 1, . . . 
r = 0,1, . . . 

with a degeneracy d (A,  r )  given by the corresponding generating function: 
a? 

CpA(Z) = c z'd(A, r ) .  
r=O 

Since we are considering here only the case c = 1, we have 
x 

q * ( z ) = r I v ( z ) =  (l-Zffl)-l  
m = l  

( 3 . 3 ~ )  

(3.3b) 

(3.4) 

(3.5) 

for any A, except for A = i t 2  with t an  integer number. In the latter case we have (Kac 
1979) 

( p , 2 / 4 =  (1 - z '+ l ) r Iv (z )*  (3.6) 
The various values of A which occur in the spectra are usually denoted by x, and 

are called surface critical exponents. 
We now consider the case of the boundary conditions compatible with the torus. 

Let E : ( p ,  P ;  N )  be the energy levels of the Hamiltonians H f  (boundary condition B 
and irreducible representation A) with N sites. P denotes the momentum (we have 
translational invariance in this case) and p the level. Let E o ( N )  be the ground-state 
energy (it is in the H:,+ sector). We consider the quantities (Cardy 1986) 

N 
8,:(p, P )  = lim - ( E : ( p ,  P ;  N )  - Eo( N ) ) .  

N + x  2 7 ~  (3.7) 

It is a consequence of conformal invariance that the tensor product of two irreducible 
representations ( (A)",  (A)") of two commuting Virasoro algebras gives the following 
contribution to the spectra (3.7): 

8 f : = A + r + A + ?  
P = A + r - (A + P) (3.8a) 
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with a degeneracy d ( A ,  r) d ( &  F). The combinations 

x = A + L  s = A - A  (3.8b)  

are called scaling dimension and spin. 
Since, we shall see, in the scaling limit the symmetry of the problem is U( l )  

Kac-Moody we first describe this algebra (see also the appendix). We add to the 
Virasoro generators L,, the generators T,(m E Z) and complete the Virasoro algebra 
(3 .2)  for c = 1 with the relations (Corrigan 1986) 

[ T m ,  L n l = m T m + n  [ T m ,  T n l = m S m + n , O *  (3 .9)  

An irreducible repiesentation of the U( 1) Kac-Moody algebra with c = 1 is given by 
the highest weight A and charge q such that 

TO@, 9 )  = qlA, 4 )  ~ O l A ,  9 )  = Ala, 4 )  (3 .10)  

where A and q are related by A = 4q2. All states of an irreducible representation have 
the same charge q and their degeneracy is independent of q and so also of A. It is 
always given by I Iv(z)  of equations (3.4) and (3.5).  In the following, we shall denote 
the irreducible representations of the U( 1) Kac-Moody algebra simply by (A),  leaving 
the sign of q unspecified. 

Since the representations of the Virasoro subalgebra (A)v have a lower degeneracy 
for A = at2  ( t  E Z) (see equation (3 .6))  the U( 1) Kac-Moody representations (0), (a), 
( l ) ,  (z), . . . , etc, are reducible in terms of Virasoro representations. So 

(0) = {O)O{lI ( 3 . 1 1 ~ )  

where 

and 

(a) = 0 ( a ( 2 k +  1)2)v.  
k s O  

(3 .116)  

(3.12) 

We now consider the U(1)-twisted Kac-Moody algebra which will turn out to be 
relevant in 0 5.  This algebra is similar to the algebra (3.9),  the only difference being 
that instead of taking T,(m'E Z) we take TF(w E Z + i ) :  

(3.13) 

There is no U( 1)  charge irl this algebra. This algebra has only one irreducible representa- 
tion (see the appendix): 

( 3 . 1 4 ~ )  (3 7 = {A} 0 {AI 
where 

(3 .14b) 

In the sums which appear in (3 .146)  each of the representations (A) has the standard 
degeneracy ll,(z) given by (3 .4)  and (3.5).  

We have now finished the necessary mathematical introduction and turn next to 
the physical problem. 
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4. Operator content of the n-state models with free boundary conditions 

Before starting to consider the n 3 5 situation, we first remind the reader about the 
n = 4  Ashkin-Teller model since the physics in the two cases is very different. The 
Ashkin-Teller quantum chain is defined by the Hamiltonian 

where 

7T 
h =  

4 cos-'( - E ) .  

(4.1) 

(4.2) 

The phase diagram of the system (Kohmoto et al 1981) is shown in figure 1. It consists 
of a fully ordered ferromagnetic region (I), a partially ordered phase (11) separated 
by two king lines from the ferromagnetic phase (I)  and the paramagnetic phase (111), 
an antiferromagnetic phase (IV) and a critical fan region (V). This system is massless 
with c = 1 along the self-dual line A = 1 between the Kosterlitz-Thouless point A( E = 
-1/J2, h = 1) and the four-state Potts point B ( E  = 1, h =a). It is also massless in the 
critical fan (-1 < E s -1/J2, 1 s h <a; 1/Amax(h)s  A s Amax(h)) again with c = 1. 

I 

I I I I 
-1 0 1 2 3 
-110 

c 

Figure 1. Phase diagram of the Ashkin-Teller quantum chain. I is the ferromagnetic region, 
I1  a partially ordered phase, 111 the paramagnetic phase, IV the antiferromagnetic phase 
and V the critical phase. 

It is essential to observe that the critical exponents are dependent only on h but 
(inside the critical fan) not on A. To illustrate this point, the operator content of the 
Ashkin-Teller model for free boundary conditions is (Rittenberg 1987, Baake et al 
1987b, Yang 1987a) 

(4.3) 

(for the whole critical region with i s  h < 00, including the critical fan). 
The situation changes completely when one considers systems with c = 1 and with 

five states or more.. Here the Hamiltonian equation (1.1) has a set of couplings ak 
(which correspond to E in equation (4.1) for n = 4) and the critical exponents are 
independent of the coupling constants on the self-dual line A = 1 but inside the critical 
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fan they are dependent on A. This is a reversed situation as compared to the Ashkin- 
Teller critical fan. 

If we take a certain curve in the space of the coupling constants ak where c = 1 
and parametrise this curve by a parameter E, the typical situation looks as in figure 2. 
One has a critical fan which ends in the point A and inside the critical fan, for a given 
value of E ,  the exponents change with A. We will discuss in detail in the next section 
the variation of the critical exponents for the case of boundary conditions compatible 
with the torus. Here we start with the simpler case of free boundary conditions. 

We begin with the observation obtained from finite-size calculations, that in the 
domain of the ak where c = 1, the lowest levels of the n-state models (we have calculated 
n = 5, 6, 8 and 12) indeed turn out to be independent of the ak and show a simple n 
and Q dependence. For free boundary conditions we find for the 8 of the lowest 
states of the various sectors at A = 1: 

8i,-(lowest state) = 1 (4.4a) 

%:(lowest state) = Q’/ n Q = 1 ,  ...,[+( n - l ) ]  (4.4b) 

%:/,,+(lowest state) = %:/,,-(lowest state) = i n  for n even. ( 4 . 4 ~ )  

Now this is precisely the set of lowest levels of the Ashkin-Teller model for free 
BC if for the coupling constant h we use the values 

h = a n  (4.5) 

(which in the Ashkin-Teller phase diagram are values within the critical fan region). 
However, the sectors in equations (4.4) appear reshuffled with respect to the sectors 
of the Ashkin-Teller model. 

We now conjecture that the operator content summed over all sectors of the n-state 
models ( n  5 5) for free BC and A = 1 in the parameter domain corresponding to c = 1 

Figure 2. Part of a phase diagram of the n-state model ( n  5 5 ) .  In the space of coupling 
constants where c = 1, one takes a curve parametrised by E. In the E - A  plane, the system 
is massless with c = 1 in the shaded area. This area has an endpoint in A. Outside the 
shaded area, for instance on the segment AB on the self-dual line, the central charge might 
be different. 
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is the same as that of the Ashkin-Teller model, equation (4.3), if we substitute equation 
(4.5): 

and for n odd 

n - 1  

(4.6b) 

We still have to give the distribution of the various U( 1) Kac-Moody representations 
appearing on the right-hand side of equation (4.6) into the different sectors of our model. 

For k = 0 the right-hand side of equation (4.6) contains a series of n-independent 
Virasoro representations (see equation (3.1 1)). Inspection of the numerical results in 
tables 3-5 shows that n-independent levels appear only in 8:,+ and E:,-, with the 
correct multiplicities for (0) in g:,+ and for (1) in 8&. 

Table 2. Normalisation factor 5 for the n-state model and different values of the coupling 
constants. 

5 1.677(5) 0 6 1.474 (2) 0 0 
1 

1 

2 

1.466 (5) _-  11 1.643 (3) 0.058 0.05 
1.203 (6) 5 1.306 (2) -0.058 -0.05 

3 0.249 (1) -0.9 1 
_ _  

0.8575 (2) _ -  

8 1.21 (1) a2= . . .  12 0.880 87 (3) a z = .  . . = a,=O 
=a,=O 

Table 3. Surface critical exponents xJd]  with a degeneracy d computed from the model 
for the five-state model (free BC) ( a ,  = 1, a 2 =  -4). x,(Exp) represent the numerical 
estimates. 

2 [l] 2.002 (5) 3 [ l]  2.99(2) 2 [l] 2.037 (2) 1 [ l]  1.041 (3) 
4 [3] 3.98 (8); 4.11 (6) 5 [3] 4.9 (2); 5.2 (1) 4 [2] 4.03 (6); 4.03 (9) 3 [2] 3.04 (3); 3.06 (2) 

5[1] 4.99(3) 5[1] 4.98(1) 4.97 (1); 5.03 (3) 
4.1 (1) 5.06 (2) 5 [4] 4.8 (2); 4.9 (1) 

f [1]  0.209(1) 4[1] 1.212 (5) 0.8[1] 0.814(1) 1.8 [ l ]  1.802 (4) 
[2] 2.21 (1); 2.269 (1) 9 [3] 3.21 (2); 3.18 (3) 1.8 [ l ]  1.819 (1) 2.8 [ l]  2.80 (2) 

3.26 (3) 2.8 [2] 2.80 (2); 2.82 (2) 3.8 [3] 3.79 (4); 3.90 (1) 
3.9 (1) 

YE11 3.22(2) 
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Table 4. Same as table 3 for the six-state model (free BC) ( a ,  = 1, a2 = a3 = 0). 

2[1] 2.04(1) 3[1] 3.03(6) 2[1] 2.08(5) 1 [ l ]  1.01 (1) 

$(+I gc-1 si+) si-’ 

xJd1 x,(Exp) xJd1 x,(Exp) x d d l  X,(EXP) x d d l  x,(Exp) 

6 [ 1 ]  0.168(1) 2 [ 1 ]  1.17(5) 4[1]  0 .66(2)  + [ 1 ]  1.75(1) 
9 [2] 2.21 (5); 2.18 (4) 9 [3] 3.12 (3); 3.19 (2); [3] 2.77 (4); 2.76 (4); [4] 3.66 (2); 3.63 (1); 

3.3 (1) 2.73 (4) 3.90 (1); 3.90 (4) 

4 [ l ]  1.56(1) 5[1] 2.59(3) $ [ l ]  1.53 (5) $[1] 2 .6(1)  

For the n-dependent terms we observe that an integer k can always be written as 
k = nr + Q with r E Z and 0 s Q s n - 1 .  The expression ere+ ( n r  + Q)’/ n is symmetric 
with respect to Q-n - Q (see equation (2.12)) and has as its lowest level x,= Q’/n 
as observed numerically in the sectors 86. If we put Q = 0 in ( n r  + Q)’/n we obtain 
x, = nr . This gives rise to an additional lowest state with x, = n. In table 3 we observe 
for n = 5 that indeed there is a state with x, = 5 in the sectors %:,TI and %:,?) which 
cannot come from (0) or { l } ,  respectively, because of its parity. 

2 

So we can now write the operator content of the various sectors. 
( a )  n=2p+2(neven) :  

( 4 . 7 ~ )  

(4.7b) 

(4.7c) 

(4 .7d)  

( b )  n = 2 p + 1  (nodd):  

( 4 . 7 ~ )  + (4.7b) + ( 4 . 7 ~ )  without (4 .7d) .  (4.8) 

In equations ( 4 . 7 ~ )  and (4.7b) we have used the definitions (3.116). The superscripts 
f in ( 4 . 7 ~ )  and (4.7b) indicate the relative space parity of the lowest levels of the two 
terms appearing in each sector. 

For a detailed check of our conjecture, we have made an extensive numerical study 
of the n-state Hamiltonians (1.1) using finite-size scaling methods. For n = 5, 6, 8 
and 12 we have used chains up to N = 9, 8, 7 and 6 sites, respectively. Applying the 
by now standard method (von Gehlen et a1 1986) the normalisation factor 6 in 
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(1.1) is determined such that the sound velocity becomes equal to one. The values of 
6 for particular choices of the coupling constants are listed in table 2. In each case 
we have checked from the finite-size corrections to the ground-state energy (Blote er 
a1 1986, Affleck 1986) that the central charge c of the Virasoro algebra is compatible 
with the value c = 1. We then have determined the finite-size quantities %!(*I defined 
by (3.1) and have compared them to our conjecture (4.7) and (4.8). Tables 3-5 illustrate 
these results by giving our numerically calculated 8:(*) together with the surface 
exponents x, expected from (4.7) and (4.8). The general agreement also in non-trivial 
cases is good enough to decide that our conjecture is correct. The finite-size scaling 
estimates presented in the tables have been computed using the van den Broeck- 
Schwartz (1979) and Bulirsch-Stoer (1964) approximants. The errors given are very 
subjective and are obtained studying the variation of the approximants with the 
parameters which occur in the methods (for more details see Henkel and Schutz (1988)). 

Before proceeding to boundary conditions compatible with the torus in the next 
section, we conclude the free boundary condition case by extending our conjecture 
(4.6) which was valid for the self-dual line A = 1 to the whole critical region with c = 1. 
Numerical finite-size studies, the details of which will be given in a subsequent 
publication, show that we simply must generalise the right-hand side of equation (4.6) 
to 

if we abbreviate the sum of sectors on the left-hand side of (4.6) by gF. The function 
g ( h )  was discussed in (1.7). 

Table 5. Same as table 3 for the eight-state model (free BC) (a ,  = 1, a, = a3 = a4= 0). 

2[1] 2.000(1) 3[1] 2.91 (8) 2[11 / 1 [ l ]  1.035 (3) 

0 [l]  1.155 (5) 7 [ 1 ]  2.13(2) 2[1] 1.997(6) 3[1] 2.98(1) 

2[1] 2.04(1) 3[1] 3.01 (3) 
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5. Operator content of the n-state models with boundary conditions compatible with 
the torus 

We consider the boundary conditions compatible with the torus. We start with the 
sectors which have 2, x 2, symmetry ( n  even) or Z2 symmetry ( n  odd) (see table 1). 
For these we find from our numerical studies, see table 7 ( c )  (for A = l),  that the lowest 
values of x (see equation (3.86)) are x = $, i, &. . . , independent of n and independent 
of the couplings as long as c = 1. The observed multiplicities fit precisely with the 
assumption that these sectors are built from the representations {&} and {&} introduced 
in equation (3,146). So we conjecture as follows. 

n even ( R  = 0,1, . . . , n - 1): 

n odd ( R  = 0,1, . . . , n - 1): 

Table 6. The five-state model. Critical exponents x[d] with a degeneracy d computed 
from the model and compared with the numerical estimates. The levels labelled by * are 
doubly degenerate for any number of sites ( a ,  = 1, u2 = -4). 

Sector P x[Dl Sector P 4 D 1  
~~ ~ 

%:,+ 0 2 [ l l  2.5 [2] 4[21 4.5 [21 %:,- 0 2.5 [2] 4[21 4.5 [2] 

2.53 ( 5 )  3.99 (1) 1 1 [ l ]  3[1] 3.5[2] 
1.99 (1) 2.48 (1) 3.793 (3) 4.5 (1) 2.501 (2)* 3.95 (2)* 4.47 (7)* 

1 3[1] 3.5 [ l]  5[3] 1.0002 (6) 2.96 (2) 3.46 (3) 
2.98 ( 5 )  3.46 (1) 4.9 (2) 3.49 (1) 

3.56 (1) 2 2 ~ 1 1  4 ~ 1 1  
2 2 ~ 1 1  4 ~ 2 1  1.98 (4) 3.9 (1) 

2.000 (2) 3.9 (1) %: 0 0.4[1] 0.9[1] 2.4[1] 
4.0 (1) 0.399 (4) 0.9003 (2) 2.40 (1) 

0.1001 (3) 1.59 (2) 2.094 ( 5 )  3.56 (2) 2.898 (3) 4.4 (1) 4.15 (2) 
8: 0 0.1 [ l]  1.6[1] 2.1 [ l]  3.6[3] 2.9 [ l]  4.4 [4] 

3.57 (4) 4.5 (2) 
3.58 (1) 1 1.4[1] 1.9[1] 3.4[2] 

1 1.1 [ l ]  2.6[2] 3.1 [21 4.6[51 1.398 (3) 1.900 (1) 3.38 (2) 
1.1002 (1) 2.58 (1) 3.1 (1) 4.56 (2) 3.39 (1) 

2.6 (1) 3.11 (3) 3.9 [3] 
%: - 4 1 . 2 [ 1 ]  1.7[2] 3.2[2] 3.7[2] 3.87 ( 5 )  3.9 (1) 3.94(1) 

1.18 (1) 1.693 (1) 3.10(1) 3.65 (4) %; - 9  1.3 [2] 1.301 (3) 
1.725 (4) 3.18 (1) 3.67 (3) _ -  1.8[1] 2.3 [21 3.8[21 

f 0.2 [ l ]  2.2 [ l]  2.7 [2] 4.2 [4] 1.80 [ l ]  2.30 (2) 3.66 ( 5 )  
0.2006 (1) 2.19 (2) 2.69 (1) 3.98 (1) 2.31 (1) 3.73 (4) 

2.72 (1) 4.1 (1) 2 0.8[1] 2.8[2] 3.3 [4] 
z; - $  1 [l]  1.5[1] 3[2] 3.5[2] 0.8006 (1) 2.75 (6) 3.3 (1) 

1.00 (1) 1.50 (2) 3.0 (1) 3.49 ( 5 )  2.8 (1) 3.3 (1) 

0.5[1] 2[1] 2.5[1] 4[4] 3.320 (1) 
0.5001 (1) 2.00 (2) 2.498 (4) 3.9 (1) 

3.9 (1) 

3.0 (1) 3.5 (2) 3.30 (3) 
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Notice that if we combine the sectors together we obtain 

2 4 ( h > T ,  Ch>T) (5.3) 

dependence 

In order to 

for n both even and odd (we have used here the notation ( 3 . 1 4 ~ ) ) .  From further 
numerical studies we have observed that the sectors with Z2 x Z2 (respectively Z,) 
symmetry have an operator content independent of g and are given by the twisted 
U( 1) Kac-Moody algebra. 

We now consider the other boundary conditions. The finite-size numerical 
calculation (tables 6,7(a)  and 7 ( b ) ;  we have also checked the eight-state model) shows 
that for A = 1 the lowest levels of the various sectors again have a very simple 

on n, Q and 6: 
%‘:,-(lowest state) = l(doub1et) 

%$(lowest state) = (Q’+ o 2 ) / 2 n .  (5.4) 

obtain (5.4) with a Gaussian form_(l.4) of the primary fields which is 
symmetric with respect to Q c) n - Q, 6 t, n - Q (remember (2 .9 ) ) ,  we introduce the 

Table 7. Critical exponents for the six-state models ( ( a ) ,  ( b )  and (c) represent together 
all the sectors of the theory). The value indicated by 2.0+ in (a )  is exact by definition 
since the level was used to determine 5 (a, = 1, a2 = a3 = 0). 

( a )  

Sector P X[Dl Sector P 401 

0 2 ~ 1  3r21 

1 3111 4r21 

2.01 (1) 2.94 (2) 
3.02 (2) 

3.00 (3) 3.97 (5) 
4.03 (5) 

2.0+ 4.00 (5) 
3.93 (7) 

2 2[11 4121 

0 &[I1 s r 2 1  
0.0833 (1) 2.085 (3) 

2.05 (5) 

1 %[I1 %[41 
1.0833 (1) 3.0 (1) 

3.14 (4) 
0 0.75[1] 2.75[1] 

0.746 (5) 2.75 (5) 

1 1.75[1] 3.75[2] 

3.76 (4) 
1.74 (1) 3.6 (2) 

4 P I  
3.9 (3) 
3.92 (3) 

5 [41 
4.9 (1) 

%[SI 
4.0 (2) 
4.0 (2) 
4.1 (1) 
4.2 (2) 

3.06 (3) 

4.75 [4] 
4.4 (3) 
4.7 (1) 

5 r21 
5.0 (1) 
5.1 (2) 

4.13 (5) 
4.10 (2) 
4.11 (2) 
4.12 (2) 

3.15 (3) 

4.76 (5) 
4.8 (1) 

3 ~ 1  4 ~ 1  5[21 

1[11 3r11 4 ~ 1  

2r11 4r11 5[41 

fill 2[11 :[11 

2.99 (4)* 3.95 (5)* 4.85 (5)* 

0.999 (1) 3.00 3.95 (5) 
3.95 (7) 

1.999 (5) 3.98 (5) 4.8 (1) 
4.8 (1) 

0.3333 (1) 1.3333 (3) 2.33 (1) 
9 [ l ]  ?[4] 
3.25 (3) 4.3 (1) 4.2 (1) 

4.3 (1) 4.2 (2) 
4[11 :[I1 !?PI 
1.333 (1) 2.33 (3) 3.3 (1) 

3.3 (1) 
BP1 ! ? P I  
2.33 (1) 3.28 (3) 3.3 (1) 
2.33 (1) 3.3 (1) 
0.75 [ l ]  2.75 [ l ]  4.75 [4] 
0.748 (1) 2.78 (2) 4.7 (1) 

4.7 (1) 
4.76 (4) 
4.9 (1) 

1.75 [ l ]  3.75 [2] 
1.75 (5) 3.7 (2) 

3.9 (1) 
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5 
6 

_ -  

1 
6 

0 

1 

1 
3 

4 
5 

0 

1 

i[lI W P I  

i[11 $[I1 

1.17 (1) 2.12 (1) 
2.16 (2) 

0.1665 (1) 2.17 (3) 

2.5 [ l]  3.5 [21 
2.5 (2) 3.48 (2) 

1.5 [ l ]  3.5 [ l ]  
1.502 (2) 3.50 (5) 

3.53 (3) 

8[11 % P I  
0.4163 2.40 (3) 

2.50 (2) 

~ 1 1  %41 

3.3 (3) 
%[21 BP1 

1.416 (1) 3.3 (1) 

2.083 (5) 3.7 (2) 
2.09 (3) 3.9 (2) 

4.1 (1) 

1.083 (1) 3.1 (1) 
~ 1 1  ~ ~ 4 1  

3.09 (3) 

9 [21 

9 P I  

3.2 (1) 
3.08 (2) 

3.1 (1) 
3.04 (4) 

4.5 [2] 
4.5 (2) 
4.6 (1) 
4.5 [3] 
4.2 (4) 
4.3 (3) 
3 P I  
4.1 (2) 
4.1 (1) 
4.1 (3) 

3.45 (5) 
3.45 (5) 

4.1 (1) 
4.08 (3) 
4.08 (3) 

3.1 (1) 

8 [21 
3.9 (1) 

8 [41 
4.1 (1) 
4.1 (1) 
4.1 (2) 
4.1 (1) 
5.5 [3] 
5.2 (3) 
5.3 (3) 

4.2 (2) 
4.5 (1) 

4.13 (3) 
4.10 (3) 

3.10 (3) 

g; -f $[13 9[21 

3 3[11 :[I1 

1.67 (1) 2.56 (4) 
2.68 (4) 

0.666 (1) 2.64 (4) 

%:,- 0 2.5 [ l ]  3.5 [2] 

3.4 (1) 
1 1.5 [ l]  3.5 [l] 

1.50 (1) 3.4 (1) 

2.53 (2) 3.47 (5) 

s: f 2[1] ?[13 

$ ?[1] $[2] 
0.832 (1) 1.83 (3) 

1.84 (1) 2.82 (2) 
2.84 (5) 

Y [21 

Y [41 

3.60 ( 5 )  
3.6 (1) 

3.58 (5) 
3.6 (1) 
3.6 (1) 
3.7 (2) 
4.5 [2] 
4.4 (1) 
4.45 (5) 
4.5 [3] 
4.2 (2) 
4.3 (1) 
4.3 (2) 
i? [I1 

% 131 
2.80 (5) 

3.6 (1) 
3.8 (3) 
3.70 (3) 

0.124 88 (1) 
1.125 (1) 

3.1 (1); 3.1 (1); 
3.1 (1); 3.1 (1) 
1.125 (2) 
2.15 (5); 2.12 (2) 
3.1 (1); 3.05 (4) 

2.12 (1) 

x(Exp) 

0.1248 (1) 
1.11 (1) 
2.11 (4) 
3.1 (1); 3.1 (2) 

1.125 (1) 

3.06 (5) 
2.1 (1); 2.20 (3) 

4 3[1] 0.6249(3) 
y[l] 1.67(2) 

p [4] 
[2] 2.67 (3); 2.70 (3) 

3.6 (3); 3.5 (3) 

$ [2] 1.60 (1); 1.64 (1) 
[2] 2.63 (4); 2.70 (2) 

?[3] 3.4(2) 

0.625 02 (2) 
1.620 (3) 
2.62 (1); 2.60 (1) 

3.46 (5); 3.52 (5) 
1.620 (5); 1.62 (1) 
2.55 (3); 2.55 ( 5 )  

3.47 (3); 3.5 (1); 

3.4 (2); 3.4 (1); 
3.4 (3) 
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expressions 

which contain sums over (A,  A) where A and are U ( l )  Kac-Moody representations 
with degeneracy given by II,(z), equation (3.5). The function g(A) in (5.5)-(5.7) has 
the properties (1.7) and describes the behaviour as, in the critical fan, we move away 
from the self-dual line A = 1. The places where g occurs are restricted by the requirement 
that the spin s = A - should not vary with A. Whether g or g-’ occurs has been 
checked from numerical calculations which will be presented in another publication: 

We can now give the operator content for the cyclic boundary conditions Z“ (see 
table 1). We have 

For n even and n odd we have for the remaining sectors (see (2.10) and (2.11)) 

88 = UQ, 0; g). (5.10) 

In (5.8) we have used the definitions (3.11) for ( 0 )  and (1). Notice that the duality 
reflection g o  l / g  interchanges Q and 0 (von Gehlen and Rittenberg 1985) and leaves 
d unchanged: 

(5.11) 

If we combine together the pairs of sectors in (5.8) and (5.9) we get the simple 
expressions 

g: = g:,+o g:,- = L(0,O; g) 

(5.12) 

and thus the whole operator content of the n-state models with all cyclic boundary 
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conditions takes the simple form 

(5.13) 

Let us discuss a few physical properties of the model. Consider first the thermal 
sector ‘8:,+. The first excited state is always the marginal operator ( A ,  a) = ( 1 ,  1 )  and 
one has always only one marginal except at A,,,(g = i n )  or at A m i n =  1/Amax(g = 4 / n )  
where one has two marginal operators. Actually in numerical studies when it is difficult 
to establish the border of the massless region (see figure 2), especially in the vicinity 
of the endpoint (A in figure 2), the most precise way to determine this border is just 
to look for the value of A when one observes the second marginal operator. At this 
point we can compare the operator content conjectured by us and those exponents 
which were previously known. First using (3.8b),  (5.7), (5.10) and (5.12), we derive 
the scaling dimensions of the primary operators in the sector %:, obtaining 

(5.14) 

If we consider only the leading ones ( a  = ,!3 = 0) we get back the known result of 
Fradkin and Kadanoff (1980). The sectors described by (5 .1)  and (5 .2 )  have not been 
considered previously since they do not correspond to the Coulomb gas. 

Our numerical results which verify our conjecture on the operator content in a 
non-trivial way not only for the lowest levels (5.4), but which test also higher levels, 
are given in tables 6 and 7 for the case A = g = 1 .  For the five-state model we have 
calculated chains up to nine sites and for the six-state model up to eight sites. The 
tables are given for only one set of values of the coupling constants (see table 2) but 
the work was repeated for other values of the ak,  and it was found that the operator 
content is unchanged as long as we stay in the c = 1 region. The agreement between 
the theoretical conjecture and the numerical estimates confirms our conjecture. Actually 
the check can be done in a more precise way. For n = 6 it turns out that the system 
has N = 2 superconformal invariance (Di Vecchia et a1 1985, Waterson 1986, Boucher 
et a1 1986) and thus the operator content can be compared with the known character 
expressions once the irreducible representations are determined. We will return to the 
problem of higher symmetries (beyond the U( 1 )  Kac-Moody algebra) in these models 
in another publication (Baake et a1 1987a). 

6. Conclusions 

The main results of this paper are given in (4.7)-(4.9) for the operator content of the 
n-state model with free boundary conditions and in (5.1), (5.2), (5.8)-(5.10) for the 
other boundary conditions. In a separate publication Suranyi (1988) shows that our 
results are compatible with extended modular invariance. As discussed in 0 5, the 
lower excitations of our spectra give the previously known critical exponents for cyclical 
boundary conditions (Fradkin and Kadanoff (1980) and references therein). Before 
concluding let us present the large-n limit of the model. This corresponds to the O(2) 
symmetric model. Using (5.10) and (5.12) we have for finite n 

a8 = UQ, 0; g) (6.1) 
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where L(Q, 0; g) is given by (5.7). In order to get the large-n limit, we take 

0 / n  = s =fixed (6.2) 

which corresponds to the boundary condition 

We will also put 

Taking now the limit we have 

This is the operator content of the O(2) theory in the charge sector Q with boundary 
condition s. From equation (6.4) we notice that, since the temperature T -  l / i ,  the 
temperature range of the massless phase spreads between 0 s T s T,.  If one takes the 
lowest excitations (/3 = 0) and periodic boundary conditions (s = 0) in equation (6.5) 
one gets the scaling dimensions 

xQ = Q2/2g" (6.6) 

and we recover the known result of JosC et al (1977) (the connection between their 
coupling constant K,, and our g" is g" = 2vK,,). 
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Appendix. Irreducible representations of the U(l)  Kac-Moody algebra (c = 1) 

( m ,  n E Z). Its irreducible representations can be obtained using the Sugawara construc- 
tion (Goddard and Olive (1986) and references therein). We take 

L, = f  :Tm-?Tr 
r e Z  

where: 

TrTs : = e( s - r )  T,T, + e( r - S)  T,T, 
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and 
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x < o  
x = o  
x>o. 

We get unitary representations taking the involution 

L; = L-, T: = T-,. 

Making the change of notations 

T, = h a r  

[ai-, af I  = 6 , s  [a,, as1 = 0 [ To 3 a, 1 = 0 

we find 
oc 

Lo=iT i+  ra:a,. 
r = l  

The highest weight states IA, q )  (see (3.10)) correspond to the bosonic vacuum and 
the character of the corresponding irreducible representations is 

xa,,(z) =Tr(zLo) = zAIIv(z) 

where A = i q 2  and IIv(z)  is given by equation (3.5). 
The twisted U(1) Kac-Moody algebra is obtained from the untwisted one (Al)  

taking T, ( p  E Z + 4) instead of T, ( m  E Z). We repeat the Sugawara construction and 
have 

L,=: c :T,-,T,:+&C?~,~ 
,€++1/2 

and 
Lo= pa;a,+&. 

F'O 

The character function corresponding to the vacuum representation is 
Lo = 1/16 X1/16(z)=Tr(z (P1/16(z) 

m 00 

(P1/16(z)=nV(z) n (1+Zmt1'2) n (1-z2'). 
m=O t=o 

This gives the decomposition (3.146) in terms of Virasoro representations. Taking the 
subspace of an even (odd) number of bosons one obtains {k} ({&}) of equation (3.146). 
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